通風井
通風井(英語:Air well)是將空氣中水蒸氣冷凝並收集冷凝水的結構或裝置[1]。儘管其設計多變,但最簡單的設計是完全被動的。不需要外部能源,幾乎沒有動態部位。通風井有三種類型:
- 高質量:20世紀初使用,但方法失敗[2]。
- 低質量的輻射收集器:20世紀後期的發展被證明是更成功的[2]。
- 主動式收集器:與除濕機相同的方式收集水;雖然這個設計能很好地工作,但它需要外部能源輸入,在特殊情況外的使用很不經濟。新的創新設計旨在最大限度地減少主動冷凝器的能源需求或利用可再生能源[3]。
背景
通風井的設計都包含足夠低的地基以形成露水。大氣中的水蒸氣通常以露水這種降水的方式自然地凝結在地基上[5]。與霧不同,霧是由空氣中顆粒周圍凝結的水滴形成的。若要持續收集露水,則必須耗散凝結過程中釋放的潛熱[6]。通風井需吸收空氣中的水分。即使在沙漠,周圍的空氣至少含有一些水。據貝桑和米利莫克的說法,大氣中含有約12,900立方千米的淡水,其中98%是水蒸氣,剩下的2%是冷凝水(雲),這幾乎相當於人類居住地上所有的可再生水資源量(約12,500立方千米)[5]。空氣中含有的水蒸氣的量叫做相對濕度,其大小與溫度有關,溫暖的氣流能攜帶更多的水蒸氣。當空氣冷卻到露點時,水蒸氣達到飽和,然後在合適的表面上凝結成水[7]。例如,對於溫度為20 °C(68 °F)、相對濕度為80%的空氣而言,其露點為16 °C(61 °F)。如果相對濕度降為50%,露點則相應地降至9 °C(48 °F)[5]。一個類似但又相當不同的獲得大氣水分的技術是捕霧網。通風井不宜與集水池混淆。集水池是人工挖掘為家畜供水的池塘。集水池又稱集雨池或露池,「露池」一詞源於多數人認為集水池中水的主要來源是由空氣中的霧水,但事實上是雨水[8]。覆蓋範圍可以大幅增加乾旱地區的作物產量。在加那利群島最為突出:在蘭薩羅特島,每年有大約140公釐(5.5英寸)的雨水,沒有永久性的河流。儘管如此,大量的作物可以透過使用一塊火山石塊生長,這是1730年火山噴發後發現的一個技巧。一些可靠的石頭地毯與促進露水;雖然這想法激發了一些思想家,但似乎不太可能影響到這一點;相對的,植物能夠直接從葉子吸收露水,並且石材覆蓋物的主要優點是減少土壤的水分流失並消除雜草的競爭[9]。
歷史
從20世紀初開始,許多發明家嘗試了大量露水收集器。著名的調查員是俄羅斯工程師弗里德里希·齊波爾德(Friedrich Zibold)[註 1]、法國生物化學家萊昂·沙普塔(Leon Chaptal)、德國─澳大利亞研究員狼克·拉克和比利時發明家阿基歐·克納彭。
齊波爾德收集器
1900年,林務工程師弗里德里希·齊波爾德在古代拜占庭城市提奧多西亞遺址附近發現了13塊大石頭[12]。每塊石頭的面積超過900平方公尺(9,700平方英尺)、高約10公尺(33英尺)。這些顯然導致了城市的水井和噴泉,發現與直徑75公釐(3.0英寸)的紅陶遺體有關。弗里德里希·齊波爾德認為石堆是用供水給提奧多西亞的通風井,並計算出每個通風井每天生產超過55,400公升(12,200英制加侖;14,600美制加侖)[10]。
為了驗證他的假設,弗里德里希·齊波爾德在提奧多西亞遺址附近的奧巴山丘建造了一個高達288公尺(945英尺)的凝固器並收集區域排水,其面積圍繞成1公尺(3英尺3英寸)高、20公尺(66英尺)寬的牆壁。他用海石堆放在10—40公分(3.9—15.7英寸)的直徑6公尺(20英尺)、高8公尺(26英尺)的截頂錐體上。石頭的形狀之間,只允許最小的良好氣流接觸[3]。
弗里德里希·齊波爾德的收集器在1912年開始運作,最大的日產量估計為360公升(79英制加侖;95美制加侖),他當時沒有公佈自己的成績。1915年基地洩漏,在成為遺址之前被部份拆除[註 2]。弗里德里希·齊波爾德的收集器已經發現與古代的石樁大致相同。雖然遠低於弗里德里希·齊波爾德的估計產量,但後來還是受開發商的啟發[3]。
沙普塔收集器
1929年,萊昂·沙普塔受弗里德里希·齊波爾德的工作啟發,在蒙彼利埃附近建了一個小通風井,其收集器結構是3公尺(9.8英尺)平方、2.5公尺(8英尺2英寸)高;石灰岩的填充面積為8立方公尺(280立方英尺)、直徑約7.5公分(3.0英寸),並在塔頂端和底部圍繞小通風孔,可根據風的流動控制開關。該裝置可以讓白天進來的暖濕空氣到了晚上在石灰石塊上冷凝成露水,然後存儲在地下的貯水層中。取決於大氣條件,每天收集的水量從1升到2.5升不等[13]。
萊昂·沙普塔自認為沒有任何實驗是成功的。當他在1946年退休時,他將自己的收集器停止運作,可能是因為他不想留下一個錯誤的設施來誤導那些想繼續研究通風井的人[2]。
狼克·拉克收集器
狼克·拉克是一名1920至1930年代在柏林工作的化學家,當時他在南斯拉夫和亞得里亞海的維斯島測試了幾種形式的通風井,該收集器受到弗里德里希·齊波爾德和邁蒙尼德的啟發[3]。
暫時確定狼克·拉克的收集器痕跡[14]。
狼克·拉克當時渴望開發收集器,1935年和其妻子瑪麗亞(Maria)搬至澳洲居住,其決定主要原因可能是妻子遇到納粹德國[15][16]。
克納彭的通風井
國際露水利用組織
通風井類型
設計通風井用於收集水分的收集器有三種主要方式:高質量、低質量的輻射收集器和主動式收集器。在20世紀初,那邊的人對高質量通風井較感興趣[17]。
高質量
低質量的輻射收集器
主動式收集器
註釋
參考資料
- ^ Popular Science 1933.
- ^ 2.0 2.1 2.2 Beysens et al. 2006.
- ^ 3.0 3.1 3.2 3.3 3.4 Nelson 2003.
- ^ Sharan 2007.
- ^ 5.0 5.1 5.2 Beysens & Milimouk 2000.
- ^ Nikolayev et al. 1996,第23–26頁.
- ^ What Exactly Is The Dew Point?. Weather Savvy. [2010-09-10]. (原始內容存檔於2010-12-01).
- ^ Pugsley 1939.
- ^ Pearce, Fred. The Miracle of the Stones. New Scientist. 2006-09-09: 50–51.
- ^ 10.0 10.1 Nikolayev et al. 1996,第4頁.
- ^ Based on diagram by Nikolayev et all, 1996
- ^ Nikolayev et al. 1996,第20–23頁.
- ^ Hills 1966,第232頁.
- ^ In Croatia (PDF). OPUR Newsletter. OPUR. April 2003 [2010-09-10]. (原始內容存檔 (PDF)於2010-09-11).
- ^ Neumann 2002,第7頁.
- ^ Klaus Neumann. Wolf Klaphake – Immigrant or refugee. Uncommon Lives (National Archives of Australia). [2010-09-10]. (原始內容存檔於2011-02-18).
- ^ Alton Stewart & Howell 2003,第1014頁.
參考書籍
- Allen, Hugh. The Story of the Airship. Goodyear Tire and Rubber Company. 1931.
- Alton Stewart, Bobby; Howell, Terry A. Encyclopedia of water science. Marcel Dekker. 2003. ISBN 978-0-8247-0948-8.
- Beysens, D.; Milimouk, I. The Case For Alternative Fresh Water Sources (PDF). International Organization For Dew Utilization. 2000 [2010-09-10]. (原始內容 (pdf)存檔於2020-12-06).
- Beysens, D.; Milimouk, I.; Nikolayev, V.S.; Berkowicz, S.; Muselli, M.; Heusinkveld, B.; Jacobs, A.F.G. Comment on "The moisture from the air as water resource in arid region: Hopes, doubt and facts" by Kogan and Trahtman (PDF). Journal of Arid Environments (Elsevier). 2006, 67 (2): 343–352 [2010-09-10]. doi:10.1016/j.jaridenv.2006.01.011. (原始內容 (PDF)存檔於2021-04-11).
- Cartlidge, Cherese. Water from Air: Water-Harvesting Machines. Norwood House. 2009. ISBN 978-1-59953-196-0.
- Clus, Owen; Ouazzani, Jalil; Muselli, Marc; Nikolayev, Vadim; Sharan, Girja; Beysens, Daniel. Radiation-cooled Dew Water Condensers Studied by Computational Fluid Dynamic (CFD). European PHOENICS User Meeting, //12 , Wimbledon, London, UK (CD-ROM) 1. 2006, 2006 (30): 11–1. Bibcode:2007arXiv0707.2514C. arXiv:0707.2514 .
- Gindel, I. Irrigation of Plants with Atmospheric Water Within the Desert. Nature. 11 September 1965, 207 (5002): 1173–1175. Bibcode:1965Natur.207.1173G. doi:10.1038/2071173a0.
- Hills, Edwin Sherbon. Arid Lands: A Geographical Appraisal. Methuen. 1966.
- Klaphake, Wolf. Practical Methods for Condensation of Water from the Atmosphere. Proceeding of the Society of Chemical Industry of Victoria. 1936, 36: 1093–1103 [2010-09-12]. (原始內容存檔於2021-01-25).
- Muselli, M.; Beysens, D.; Milimouk, I. Comparative Dew Yields From Two Large Planar Dew Condensers. Journal of Arid Environments. January 2006, 64 (1): 54–76 [2011-04-06]. doi:10.1016/j.jaridenv.2005.04.007. (原始內容存檔於2013-02-01).
- Nelson, Robert A. Air Wells, Fog Fences & Dew Ponds – Methods for Recovery of Atmospheric Humidity. Rex Research. 2003 [2010-09-10]. (原始內容存檔於2021-05-04).
This article has been widely reproduced, including extracts in Sharan, 2006.
- Neumann, Klaus. Fifth Columnists? German and Austrian Refugees in Australian Internment Camps (PDF). National Archives of Australia. 2002 [2011-03-18]. (原始內容 (PDF)存檔於2012-02-20).
- Nikolayev, V.S.; Beysens, D.; Gioda, A.; Milimouk, I.; Katiushin, E.; Morel, J. P. Water Recovery from Dew. Journal of Hydrology (Elsevier). 1996, 182: 19–35. Bibcode:1996JHyd..182...19N. doi:10.1016/0022-1694(95)02939-7.
- Pugsley, Alfred J. Dewponds in Fable and Fact. Country Life (magazine). 1939.
- Sharan, Girja. Dew Harvest. Foundation Books. 2006. ISBN 81-7596-326-3.
- Sharan, Girja. Harvesting dew to supplement drinking water supply in arid coastal villages of Gujarat (PDF). Indian Institute of Management. 2007 [2010-09-10]. (原始內容 (pdf)存檔於2011-06-14).
- Anonymous. Air Well Waters Parched Farms. Popular Science (Bonnier Corporation). March 1933, 122 (3) [2010-09-10].