Portal:Mathematics

The Mathematics Portal


Mathematics is the study of numbers, quantity, space, pattern, structure, and change. Mathematics is used throughout the world as an essential tool in many fields, including natural science, engineering, medicine, and the social sciences. Used for calculation, it is considered the most important subject. Applied mathematics, the branch of mathematics concerned with application of mathematical knowledge to other fields, inspires and makes use of new mathematical discoveries and sometimes leads to the development of entirely new mathematical disciplines, such as statistics and game theory. Mathematicians also engage in pure mathematics, or mathematics for its own sake, without having any application in mind. There is no clear line separating pure and applied mathematics, and practical applications for what began as pure mathematics are often discovered. (Full article...)

Selected article – show another


Catalan-Hexagons-example.svg
Fourteen ways of triangulating a hexagon
Image credit: User:Dmharvey

The Catalan numbers, named for the Belgian mathematician Eugène Charles Catalan, are a sequence of natural numbers that are important in combinatorial mathematics. The sequence begins:

1, 1, 2, 5, 14, 42, 132, ...

The Catalan numbers are solutions to numerous counting problems which often have a recursive flavour. In fact, one author lists over 60 different possible interpretations of these numbers. For example, the nth Catalan number is the number of full binary trees with n internal nodes, or n+1 leaves. It is also the number of ways of associating n applications of a binary operator as well as the number of ways that a convex polygon with n + 2 sides can be cut into triangles by connecting vertices with straight lines. (Full article...)

View all selected articles

Selected image – show another

three lines connecting corresponding vertices of a larger triangle on the left and a smaller one on the right converge at a point further to the right called the "center of perspectivity"
Credit: User:Jujutacular, based on an original by User:DynaBlast
In projective geometry, Desargues' theorem states that two triangles are in perspective axially if and only if they are in perspective centrally. Lines through the triangle sides meet in pairs at collinear points along the axis of perspectivity. Lines through corresponding pairs of vertices on the triangles meet at a point called the center of perspectivity.

Did you know – view different entries

Did you know...
Showing 7 items out of 75

WikiProjects

The Mathematics WikiProject is the center for mathematics-related editing on Wikipedia. Join the discussion on the project's talk page.

WikiProjects

Project pages

Essays

Subprojects

Related projects

Things you can do

Subcategories


Select [►] to view subcategories

Topics in mathematics

General Foundations Number theory Discrete mathematics
Nuvola apps bookcase.svg
Set theory icon.svg
Nuvola apps kwin4.png
Nuvola apps atlantik.png


Algebra Analysis Geometry and topology Applied mathematics
Arithmetic symbols.svg
Source
Nuvola apps kpovmodeler.svg
Gcalctool.svg

Index of mathematics articles

ARTICLE INDEX:
MATHEMATICIANS:

Related portals

In other Wikimedia projects

The following Wikimedia Foundation sister projects provide more on this subject:

Wikibooks
Books

Commons
Media

Wikinews 
News

Wikiquote 
Quotations

Wikisource 
Texts

Wikiversity
Learning resources

Wiktionary 
Definitions

Wikidata 
Database